Extensions 1→N→G→Q→1 with N=C32 and Q=C6×D4

Direct product G=N×Q with N=C32 and Q=C6×D4
dρLabelID
D4×C32×C6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=C32 and Q=C6×D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C6×D4) = C6×S3≀C2φ: C6×D4/C6D4 ⊆ Aut C32244C3^2:(C6xD4)432,754
C322(C6×D4) = C2×He34D4φ: C6×D4/C2×C4C6 ⊆ Aut C3272C3^2:2(C6xD4)432,350
C323(C6×D4) = D4×C32⋊C6φ: C6×D4/D4C6 ⊆ Aut C323612+C3^2:3(C6xD4)432,360
C324(C6×D4) = C2×He36D4φ: C6×D4/C23C6 ⊆ Aut C3272C3^2:4(C6xD4)432,377
C325(C6×D4) = C3×S3×D12φ: C6×D4/C12C22 ⊆ Aut C32484C3^2:5(C6xD4)432,649
C326(C6×D4) = C3×D6⋊D6φ: C6×D4/C12C22 ⊆ Aut C32484C3^2:6(C6xD4)432,650
C327(C6×D4) = C6×D6⋊S3φ: C6×D4/C2×C6C22 ⊆ Aut C3248C3^2:7(C6xD4)432,655
C328(C6×D4) = C6×C3⋊D12φ: C6×D4/C2×C6C22 ⊆ Aut C3248C3^2:8(C6xD4)432,656
C329(C6×D4) = C3×S3×C3⋊D4φ: C6×D4/C2×C6C22 ⊆ Aut C32244C3^2:9(C6xD4)432,658
C3210(C6×D4) = C3×Dic3⋊D6φ: C6×D4/C2×C6C22 ⊆ Aut C32244C3^2:10(C6xD4)432,659
C3211(C6×D4) = C2×D4×He3φ: C6×D4/C2×D4C3 ⊆ Aut C3272C3^2:11(C6xD4)432,404
C3212(C6×D4) = C3×C6×D12φ: C6×D4/C2×C12C2 ⊆ Aut C32144C3^2:12(C6xD4)432,702
C3213(C6×D4) = C6×C12⋊S3φ: C6×D4/C2×C12C2 ⊆ Aut C32144C3^2:13(C6xD4)432,712
C3214(C6×D4) = S3×D4×C32φ: C6×D4/C3×D4C2 ⊆ Aut C3272C3^2:14(C6xD4)432,704
C3215(C6×D4) = C3×D4×C3⋊S3φ: C6×D4/C3×D4C2 ⊆ Aut C3272C3^2:15(C6xD4)432,714
C3216(C6×D4) = C3×C6×C3⋊D4φ: C6×D4/C22×C6C2 ⊆ Aut C3272C3^2:16(C6xD4)432,709
C3217(C6×D4) = C6×C327D4φ: C6×D4/C22×C6C2 ⊆ Aut C3272C3^2:17(C6xD4)432,719

Non-split extensions G=N.Q with N=C32 and Q=C6×D4
extensionφ:Q→Aut NdρLabelID
C32.(C6×D4) = C2×D4×3- 1+2φ: C6×D4/C2×D4C3 ⊆ Aut C3272C3^2.(C6xD4)432,405
C32.2(C6×D4) = C18×D12φ: C6×D4/C2×C12C2 ⊆ Aut C32144C3^2.2(C6xD4)432,346
C32.3(C6×D4) = S3×D4×C9φ: C6×D4/C3×D4C2 ⊆ Aut C32724C3^2.3(C6xD4)432,358
C32.4(C6×D4) = C18×C3⋊D4φ: C6×D4/C22×C6C2 ⊆ Aut C3272C3^2.4(C6xD4)432,375
C32.5(C6×D4) = D4×C3×C18central extension (φ=1)216C3^2.5(C6xD4)432,403

׿
×
𝔽